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Abstract. This paper addresses a multicriteria problem of Boolean linear programming 

with parametric optimality. Parameterizations is introduced by dividing a set of objectives 

into a family of disjoint subsets, within each Pareto optimality is used to establish 

dominance between alternatives. The introduction of this principle allows us to connect 

such classical optimality sets as Pareto and extreme. The parameter space of admissible 

perturbations in such problem is formed by a set of additive matrices, with arbitrary 

Hölder’s norms specified in the solution and criterion spaces. The lower and upper 

bounds for the radius of strong stability are obtained with some important properties of 

attainability as corollaries. 
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1. Introduction 

 

Discrete optimization is currently one of the most dynamically developing 

areas of mathematics. The tasks of discrete mathematics are numerous and 

diverse. They arise in various fields of mathematics, as well as in economics, 

technology, and computer science. This circumstance led to a rapid increase in 

the number of works devoted to the theory and methods of discrete optimization 

(see, for example, the monograph [27], the review [5] as well as the bibliography 

therein). The widespread use of discrete optimization models has attracted the 

attention of many experts to the study of various aspects of stability, as well as 

the problems of parametric and postoptimal analysis of both scalar (single-

criterion) and vector (multicriteria) discrete optimization problems. Despite the 

abundance of approaches to stability analysis in discrete optimization problems, 

two main directions can be distinguished: qualitative and quantitative. 

In the framework of the qualitative direction, the authors focus on 

identifying various types of stability of the problem [4,6,15,17,22,23], 

establishing a relationship between different types of stability [18, 20], as well as 

on searching and describing the stability region of the optimal solution [28]. 

mailto:yurnik@utu.fi


PROCEEDINGS OF  IAM, V. 9, N. 2, 2020 

 

100 

 

The quantitative direction, described in sufficient detail in [14] (see also, 

[5] and [19]), is associated with obtaining estimates of permissible changes in the 

initial data of the problem, preserving a certain predetermined property of optimal 

solutions [2,3,7-13,], and the development of algorithms for calculating these 

estimates [16,25,26]. The key concept here is the radius of stability, which is 

understood as the radius of the limit “ball of stability”, i.e. such a neighborhood 

of the source data in the metric space of the problem parameters that any 

“perturbed” problem with parameters from this neighborhood has some 

invariance property with respect to the original problem. 

The paper is organized as follows. In section 2, we formulate parametric 

optimality and introduce basic concepts along with the notation. Section 3 

contains some auxiliary statements about norms and two lemmas used later for 

the proof of the main result. In section 4, we formulate and prove the main result 

regarding the lower and upper bounds for the strong stability radius. Section 5 

lists most important corollaries. 

 

2. Main definitions and problem formulation 

 

Consider a multicriteria Boolean linear programming problem (ILP) in the 

following formulation. Let 𝐶 = [𝑐𝑖𝑗] ∈ 𝐑
𝑚×𝑛 be a matrix whose rows are 

denoted by 𝐶𝑖 = (𝑐𝑖1, 𝑐𝑖2, . . . , 𝑐𝑖𝑛) ∈ 𝐑
𝑛, 𝑖 ∈ 𝑁𝑚 = {1,2, . . . , 𝑚}, 𝑚 ≥ 1. Let 𝑥 =

(𝑥1, 𝑥2, . . . , 𝑥𝑛)
𝑇 ∈ 𝑋 ⊂ 𝐄𝑛, 𝑛 ≥ 2, 𝐄 = {0,1}, and the number of elements of the 

set 𝑋 is finite and greater than one. On the set of (admissible) solutions 𝑋, we 

define a vector linear criterion  

𝐶𝑥 = (𝐶1𝑥, 𝐶2𝑥,… , 𝐶𝑚𝑥)
𝑇 → min

𝑥∈𝑋
.  (1) 

In the space 𝐑𝑘 of arbitrary dimension 𝑘 ∈ 𝐍 we introduce a binary 

relation that generates the Pareto optimality principle [24]. 

𝑦 ≻ 𝑦′  ⇔   𝑦 ≥ 𝑦′  &  𝑦 ≠ 𝑦′, 
 where 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑘)

𝑇 ∈ 𝐑𝑘, 𝑦′ = (𝑦′1, 𝑦′2, . . . , 𝑦′𝑘)
𝑇 ∈ 𝐑𝑘 . 

The symbol ≻, as usual, denotes the negation of the relation ≻. 
Let ∅ ≠ 𝐼 ⊆ 𝑁𝑚, |𝐼| = 𝑣, and let 𝐶𝐼 denote the submatrix of the matrix 𝐶 ∈

𝐑𝑚×𝑛 consisting of rows of this matrix with the numbers of the subset 𝐼, i.e.  

𝐶𝐼 = (𝐶𝑖1 , 𝐶𝑖2 , . . . , 𝐶𝑖𝑣)
𝑇 , 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑣}, 

1 ≤ 𝑖1 < 𝑖2 <. . . < 𝑖𝑣 ≤ 𝑚, 𝐶𝐼 ∈ 𝐑
𝑣×𝑛. 

Let 𝑠 ∈ 𝑁𝑚, and let 𝑁𝑚 = ∪
𝑘∈𝑁𝑠

𝐼𝑘 be a partition of the set 𝑁𝑚 into 𝑠 nonempty 

sets, i.e. 𝐼𝑘 ≠ ∅, 𝑘 ∈ 𝑁𝑠, and 𝑖 ≠ 𝑗 ⇒ 𝐼𝑖 ∩ 𝐼𝑗 = ∅. For this partition, we introduce 

a set of (𝐼1, 𝐼2, . . . , 𝐼𝑠)-efficient solutions according to the formula:  

𝐺𝑚(𝐶, 𝐼1, 𝐼2, . . . , 𝐼𝑠) = {𝑥 ∈ 𝑋 ∶   ∃𝑘 ∈ 𝑁𝑠  ∀𝑥′ ∈ 𝑋  (𝐶𝐼𝑘𝑥 ≻  𝐶𝐼𝑘𝑥′)}. (2) 

Sometimes for brevity we denote this set by 𝐺𝑚(𝐶). 
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Obviously, any 𝑁𝑚-efficient solution 𝑥 ∈ 𝐺𝑚(𝐶, 𝑁𝑚) (𝑠 = 1) is Pareto 

optimal, i.e. efficient solution to problem (1). Therefore, the set 𝐺𝑚(𝐶, 𝑁𝑚) is the 

Pareto set [21,24]:  

𝑃𝑚(𝐶) = {𝑥 ∈ 𝑋 ∶   ∀𝑥′ ∈ 𝑋  (𝐶𝑥 ≻  𝐶𝑥′)}. 
We also use the following set: 

𝑋(𝑥, 𝐶) = {𝑥′ ∈ 𝑋 ∶   𝐶𝑥 ≻ 𝐶𝑥′}, 
which is a set of solutions 𝑥′ ∈ 𝑋 such that 𝑥′ dominates 𝑥 in Pareto sense in 

problem (1). Therefore, 

𝑃𝑚(𝐶) = {𝑥 ∈ 𝑋 ∶   𝑋(𝑥, 𝐶) = ∅}. 
In the other extreme case, when 𝑠 = 𝑚, 𝐺𝑚(𝐶, {1}, {2}, . . . , {𝑚}) is a set of 

extreme solutions (see e.g. [21]). This set is denoted by 𝐸𝑚(𝐶). Thereby, we 

have: 

𝐸𝑚(𝐶) = {𝑥 ∈ 𝑋 ∶   ∃𝑘 ∈ 𝑁𝑚  ∀𝑥′ ∈ 𝑋  (𝐶𝑘𝑥 ≻  𝐶𝑘𝑥′)} = 

{𝑥 ∈ 𝑋 ∶   ∃𝑘 ∈ 𝑁𝑚  ∀𝑥′ ∈ 𝑋  (𝐶𝑘𝑥 ≤ 𝐶𝑘𝑥′)}. 
It is easy to see that the set of extreme solutions is composed of the best 

solutions for each of the 𝑚 criteria.So, in this context, the parametrization of the 

optimality principle refers to the introduction of such a characteristic of the 

binary preference relation that allows us to connect the well-known choice 

functions, parameterizing them from the Pareto to the extreme. 

Denoted by 𝑍𝑚(𝐶, 𝐼1, 𝐼2, … , 𝐼𝑠), the multicriteria ILP problem consists in 

finding the set 𝐺𝑚(𝐶, 𝐼1, 𝐼2, … , 𝐼𝑠). Sometimes, for the sake of brevity, we use the 

notation 𝑍𝑚(𝐶) for this problem. 

It is easy to see that the set 𝑃1(𝐶) = 𝐸1(𝐶) is the set of optimal solutions 

to the scalar (single-criterion) problem 𝑍1(𝐶, 𝑁1), where 𝐶 ∈ 𝐑𝑛. 
For any nonempty subset 𝐼 ⊆ 𝑁𝑚 we introduce the notation  

𝑃(𝐶𝐼) = {𝑥 ∈ 𝑋 ∶   ∀𝑥′ ∈ 𝑋  (𝐶𝐼𝑥 ≻  𝐶𝐼𝑥′)}, 
𝑋(𝑥, 𝐶𝐼) = {𝑥′ ∈ 𝑋 ∶   𝐶𝐼𝑥 ≻  𝐶𝐼𝑥′)}, 

i.e.  

𝑃(𝐶𝐼) = {𝑥 ∈ 𝑋 ∶   𝑋(𝑥, 𝐶𝐼) = ∅}. 
Then, by virtue of (2), we obtain  

𝐺𝑚(𝐶, 𝐼1, 𝐼2, … , 𝐼𝑠) = {𝑥 ∈ 𝑋 ∶   ∃𝑘 ∈ 𝑁𝑠  (𝑥 ∈ 𝑃(𝐶𝐼𝑘))}.                   (3) 

Therefore, we have  

𝐺𝑚(𝐶, 𝐼1, 𝐼2, … , 𝐼𝑠) = ∪
𝑘∈𝑁𝑠

𝑃(𝐶𝐼𝑘), 𝑁𝑚 = ∪
𝑘∈𝑁𝑠

𝐼𝑘 . 

It is obvious that all the sets given here are nonempty for any matrix 𝐶 ∈ 𝐑𝑚×𝑛. 
In the space of solutions 𝐑𝑛, we define an arbitrary Hölder’s norm 𝑙𝑝, 𝑝 ∈

[1,∞], i.e. by the norm of a vector 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛)
𝑇 ∈ 𝐑𝑛 we mean the 

number  

∥ 𝑎 ∥𝑝=

{
 
 

 
 
(∑

𝑗∈𝑁𝑛

|𝑎𝑗|
𝑝)

1/𝑝

if  1 ≤ 𝑝 < ∞,

max{|𝑎𝑗| ∶   𝑗 ∈ 𝑁𝑛} if  𝑝 = ∞.
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In the space of criteria 𝐑𝑚, we define an arbitrary Hölder’s norm 𝑙𝑞 , 𝑞 ∈ [1,∞], 

and 𝑙𝑝 ≠ 𝑙𝑞. By the norm of the matrix 𝐶 ∈ 𝐑𝑚×𝑛 with the rows 𝐶𝑖, 𝑖 ∈ 𝑁𝑚, we 

mean the norm of a vector whose components are the norms of the rows of the 

matrix. By that, we have  

∥ 𝐶 ∥𝑝𝑞=∥ (∥ 𝐶1 ∥𝑝, ∥ 𝐶2 ∥𝑝, … , ∥ 𝐶𝑚 ∥𝑝) ∥𝑞 . 

Obviously, 

∥ 𝐶𝑖 ∥𝑝≤∥ 𝐶𝐼 ∥𝑝𝑞≤∥ C ∥𝑝𝑞 , 𝑖 ∈ 𝐼 ⊆ 𝑁𝑚. (4) 

So, it is easy to see that for any 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑛)
𝑇 ∈ 𝐑𝑛 with 

|𝑎𝑗| = 𝛼, 𝑗 ∈ 𝑁𝑛, 

the following equality holds  

∥ 𝑎 ∥𝑝= 𝛼𝑛
1/𝑝  (5) 

 for any 𝑝 ∈ [1,∞]. 
In the solution space 𝐑𝑛 along with the norm 𝑙𝑝, 𝑝 ∈ [1,∞], we will use 

the conjugate norm 𝑙𝑝∗ , where the numbers 𝑝 and 𝑝∗ are connected, as usual, by 

the equality  
1

𝑝
+
1

𝑝∗
= 1, 

 assuming 𝑝∗ = 1 if 𝑝 = ∞, and 𝑝∗ = ∞ if 𝑝 = 1. Therefore, we further suppose 

that the range of variation of the numbers 𝑝 and 𝑝∗ is the closed interval [1,∞], 
and the numbers themselves are connected by the above conditions. 

Further we use the well-know Hölder’s inequality  

|𝑎𝑇𝑏| ≤∥ 𝑎 ∥𝑝∥ 𝑏 ∥𝑝∗  (6) 

 that is true for any two vectors 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑛)
𝑇 ∈ 𝐑𝑛 and 𝑏 =

(𝑏1, 𝑏2, … , 𝑏𝑛)
𝑇 ∈ 𝐑𝑛. 

Perturbation of the elements of the matrix 𝐶 is imposed by adding matrices 

𝐶′ from 𝐑𝑚×𝑛  to it. Thus, the perturbed problem 𝑍𝑚(𝐶 + 𝐶′) has the form  

(𝐶 + 𝐶′)𝑥 → min
𝑥∈𝑋

, 

and the set of its (𝐼1, 𝐼2, . . . , 𝐼𝑠)-efficient solutions is 𝐺𝑚(𝐶 + 𝐶′, 𝐼1, 𝐼2, … , 𝐼𝑠). 
For an arbitrary number 𝜀 > 0, we define the set of perturbing matrices  

Ω𝑝𝑞(𝜀) = {𝐶
′ ∈ 𝐑𝑚×𝑛 ∶  ∥ 𝐶′ ∥𝑝𝑞< 𝜀} 

with rows 𝐶𝑖
′, 𝑖 ∈ 𝑁𝑚. 

Following [3,6,9], the  strong stability radius of the ILP problem 

𝑍𝑚(𝐶, 𝐼1, 𝐼2, … , 𝐼𝑠), 𝑚 ∈ 𝐍, (called 𝑇1-stability radius in the terminology of [9, 

10]) is the number 

𝜌 = 𝜌𝑠
𝑚(𝑝, 𝑞) = {

supΞ if  Ξ ≠ ∅,
0 if  Ξ = ∅,

 

where 

Ξ = {𝜀 > 0 ∶   ∀𝐶′ ∈ Ω𝑝𝑞(𝜀)    (𝐺
𝑚(𝐶) ∩ 𝐺𝑚(𝐶 + 𝐶′) ≠ ∅)}. 

Thus, the strong stability radius of the problem 𝑍𝑚(𝐶) determines the limit 

level of perturbations of the elements of the matrix 𝐶 that preserve optimality of 

at least one (not necessarily the same) solution of the set 𝐺𝑚(𝐶) of the original 
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problem. For any 𝐶′ ∈ Ω𝑝𝑞(𝜀)   and  𝜀 > 0, it is obvious that 𝐺𝑚(𝐶) ∩ 𝐺𝑚(𝐶 +

𝐶′) ≠ ∅ if 𝐺𝑚(𝐶, 𝐼1, 𝐼2, … , 𝐼𝑠) = X. Therefore, the problem 𝑍𝑚(𝐶) with 𝐺𝑚(𝐶) =
X is called non-trivial. 

 

3. Lemmas 

Before formulating the main result regarding the strong stability radius 

bounds in the next section, we need to prove two supplementary statements 

presented in this section as lemma 1 and lemma 2. 

Hereinafter, 𝑎+ is a projection of a vector 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑘) ∈ 𝐑
𝑘 on a 

positive orthant, i.e. 𝑎+ = [𝑎]+ = (𝑎1
+, 𝑎2

+, … , 𝑎𝑘
+), where upperscript  + implies 

positive cut of vector 𝑎. That is, we have 

𝑎𝑖
+ = [𝑎𝑖]

+ = max{0, 𝑎𝑖}. 
 

 

Lemma 1.  Given 𝑥0 ∈ 𝐺𝑚(𝐶),  𝑘 ∈ 𝑁𝑠 and 𝜑 > 0  such that for any x∉ 𝐺𝑚(𝐶) 
the inequality 

‖[𝐶𝐼𝑘(𝑥 − 𝑥
0)]

+
‖
𝑞
≥ 𝜑 ∥ 𝑥 − 𝑥0 ∥𝑝∗> 0 (7) 

holds. Then the following  formula is true: 

∀ 𝑥 ∉ 𝐺𝑚(𝐶)  ∀𝐶′ ∈ Ω𝑝𝑞(𝜑) ((𝐶𝐼𝑘 + 𝐶𝐼𝑘
′ )𝑥0 ≻ (𝐶𝐼𝑘 + 𝐶𝐼𝑘

′ )𝑥).  (8) 

Proof. Assume there exist a solution �̃� ∉ 𝐺𝑚(𝐶) and a perturbing matrix �̃� ∈
Ω𝑝𝑞(𝜑) such that 

(𝐶𝐼𝑘 + �̃�𝐼𝑘)𝑥
0 ≻ (𝐶𝐼𝑘 + �̃�𝐼𝑘)�̃�. 

Then for any index 𝑖 ∈ 𝐼𝑘the following inequality is true: 

(𝐶𝑖 + �̃�𝑖)𝑥
0 ≥ (𝐶𝑖 + �̃�𝑖)�̃�. 

Hence, we have 

�̃�𝑖(𝑥
0 − �̃�) ≥ 𝐶𝑖(𝑥

0 − �̃�),   𝑖 ∈ 𝐼𝑘  . 
From the above we derive 

|�̃�𝑖(�̃� − 𝑥
0)| ≥ [𝐶𝑖(�̃� − 𝑥

0)]+,   𝑖 ∈ 𝐼𝑘  . 
Taking into consideration Hölder’s inequality (6), we obtain 

∥ �̃�𝑖 ∥𝑝∥ �̃� − 𝑥
0 ∥𝑝∗≥ [𝐶𝑖(�̃� − 𝑥

0)]+,   𝑖 ∈ 𝐼𝑘 . 

Due to inequalities (4), we get a contradiction with (7): 

𝜑 ∥ �̃� − 𝑥0 ∥𝑝∗>∥ �̃� ∥𝑝𝑞∥ �̃� − 𝑥
0 ∥𝑝∗≥∥ �̃�𝐼𝑘 ∥𝑝𝑞∥ �̃� − 𝑥

0 ∥𝑝∗

≥ ‖[𝐶𝐼𝑘(�̃� − 𝑥
0)]

+
‖
𝑞
,    

so formula (8) is valid.  □ 

Lemma 2. Given the formula following formula 

 ∃𝑥0 ∉ 𝐺𝑚(𝐶)  ∃𝑎 ∈ 𝐑𝑛  ∀ 𝑥 ∈ 𝐺𝑚(𝐶)  (𝑎𝑇(𝑥0 − 𝑥) < 0) 
is true, there exists a non-zero matrix 𝐶∗ ∈ 𝐑𝑚×𝑛 such that 

𝐺𝑚(𝐶) ∩ 𝐺𝑚(𝐶∗) = ∅. 
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Proof. Obviously 𝑎 ≠ 𝟎 = (0,0,… ,0)𝑇 ∈ 𝐑𝑚. Let rows 𝐶𝑖
∗, 𝑖 ∈ 𝑁𝑚 of the matrix 

𝐶∗ ∈ 𝐑𝑚×𝑛 be defined as: 

𝐶𝑖
∗ = 𝑎𝑇 , 𝑖 ∈ 𝑁𝑚 . 

Then we get 

𝐶𝑖
∗(𝑥0 − 𝑥) < 0, 𝑖 ∈ 𝑁𝑚 . 

Thus for any index 𝑘 ∈ 𝑁𝑠 , the solution 𝑥 ∉  𝑃(𝐶𝐼𝑘
∗ ) if 𝑥 ∈ 𝐺𝑚(𝐶). 

Therefore, we have 

𝑥 ∉ 𝐺𝑚(𝐶∗). The last implies 

𝐺𝑚(𝐶) ∩ 𝐺𝑚(𝐶∗) = ∅.  □ 

 

4. Bounds 

 

For the multicriteria non-trivial ILP problem 𝑍𝑚(𝐶, 𝐼1, 𝐼2, … , 𝐼𝑠), 𝑚 ∈ 𝐍, 
for any 𝑝, 𝑞 ∈ [1,∞] and 𝑠 ∈ 𝑁𝑚 we define: 

𝜑𝑠
𝑚(𝑝, 𝑞) = max

𝑥′∈𝐺𝑚(𝐶)
  max
𝑘∈𝑁𝑠

  min
𝑥∉𝐺𝑚(𝐶)

  
∥ [𝐶𝐼𝑘(𝑥 − 𝑥′)]

+ ∥𝑞

∥ 𝑥 − 𝑥′ ∥𝑝∗
 

𝜓𝑠
𝑚(𝑝, 𝑞) = 𝑛

1
𝑝𝑚

1
𝑞  min
𝑥∉𝐺𝑚(𝐶)

max
𝑥′∈𝐺𝑚(𝐶)

  max
𝑘∈𝑁𝑠

 max
𝑖∈𝐼𝑘

𝐶𝑖(𝑥 − 𝑥′)

∥ 𝑥 − 𝑥′ ∥1
. 

We are now ready to formulate the main result. 

Theorem 1.  For any 𝑚 ∈ 𝑵, 𝑝, 𝑞 ∈ [1,∞] and 𝑠 ∈ 𝑁𝑚, the strong stability 

radius of the multicriteria non-trivial ILP problem 𝑍𝑚(𝐶, 𝐼1, 𝐼2, … , 𝐼𝑠) has the 

following lower and upper bounds: 

0 < 𝜑𝑠
𝑚(𝑝, 𝑞) ≤ 𝜌𝑠

𝑚(𝑝, 𝑞) ≤ min {𝜓𝑠
𝑚(𝑝, 𝑞), ‖𝐶‖𝑝𝑞}. 

Proof. Due to (3), the formula is true: 

∀ 𝑥′ ∈ 𝐺𝑚(𝐶)   ∃ 𝑘 ∈ 𝑁𝑠  (𝑥′ ∈ 𝑃(𝐶𝐼𝑘)). 

Therefore, for any index 𝑘 ∈ 𝑁𝑠 , we get 𝑥 ∉ 𝑃(𝐶𝐼𝑘) if 𝑥 ∉ 𝐺
𝑚(𝐶). From there 

we conclude that the lower bound is positive, i.e. 𝜑𝑠
𝑚(𝑝, 𝑞) > 0. 

Now we prove that 𝜌𝑠
𝑚(𝑝, 𝑞) ≥ 𝜑𝑠

𝑚(𝑝, 𝑞). We chose an arbitrary perturbing 

matrix 𝐶′ ∈ 𝐑𝑚×𝑛 such that it belongs to Ω𝑝𝑞(𝜑𝑠
𝑚(𝑝, 𝑞)). In order to prove the 

lower bound for strong stability radius, it suffices to demonstrate that there exists a 

solution 𝑥∗ ∈ 𝐺𝑚(𝐶) ∩ 𝐺𝑚(𝐶 + 𝐶′). According to the definition of the 

number 𝜑𝑠
𝑚(𝑝, 𝑞), there exist a solution 𝑥0 ∈ 𝐺𝑚(𝐶) and an index 𝑘 ∈ 𝑁𝑠 such 

that for any solution 𝑥 ∉ 𝐺𝑚(𝐶) we have: 

∥ [𝐶𝐼𝑘(𝑥 − 𝑥
0)]+ ∥𝑞≥ 𝜑𝑠

𝑚(𝑝, 𝑞) ∥ 𝑥 − 𝑥0 ∥𝑝∗> 0. 

From the above by lemma 1, we get the following formula is true: 

∀ 𝑥 ∉ 𝐺𝑚(𝐶)  ∀𝐶′ ∈ Ω𝑝𝑞(𝜑𝑠
𝑚(𝑝, 𝑞)) ((𝐶𝐼𝑘 + 𝐶𝐼𝑘

′ )𝑥0 ≻ (𝐶𝐼𝑘 + 𝐶𝐼𝑘
′ )𝑥).         (9) 

Further, we define a way of selecting a necessary solution 𝑥∗ ∈ 𝐺𝑚(𝐶) ∩

𝐺𝑚(𝐶 + 𝐶′), where 𝐶′ ∈ Ω𝑝𝑞(𝜑𝑠
𝑚(𝑝, 𝑞)). If 𝑥0 ∈ 𝐺𝑚(𝐶 + 𝐶′), then we select 

 𝑥∗ = 𝑥0. Otherwise, due to (3) we have 𝑥0 ∉ 𝑃(𝐶𝐼𝑘 + 𝐶𝐼𝑘
′ ). Thus due to the 
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property of outer stability for the Pareto set 𝑃(𝐶𝐼𝑘 + 𝐶𝐼𝑘
′ )  (see e.g. [26]), we can 

chose a solution  𝑥∗ ∈ 𝑃(𝐶𝐼𝑘 + 𝐶𝐼𝑘
′ ) such that 

((𝐶𝐼𝑘 + 𝐶𝐼𝑘
′ )𝑥0 ≻ (𝐶𝐼𝑘 + 𝐶𝐼𝑘

′ ) 𝑥∗). 

Taking into account (9), it is easy to derive 𝑥∗ ∈ 𝐺𝑚(𝐶). Since  𝑥∗ ∈
𝐺𝑚(𝐶 + 𝐶′), we have just proven that 𝜌𝑠

𝑚(𝑝, 𝑞) ≥ 𝜑𝑠
𝑚(𝑝, 𝑞). 

Now we prove that 𝜌𝑠
𝑚(𝑝, 𝑞) ≤ 𝜓𝑠

𝑚(𝑝, 𝑞). First, notice that according to the 

definition of the number 𝜓𝑠
𝑚(𝑝, 𝑞), there exists a solution 𝑥0 = (𝑥1

0, 𝑥2
0, … , 𝑥𝑛

0) ∉
𝐺𝑚(𝐶) such that for any solution 𝑥 ∈ 𝐺𝑚(𝐶) and any index 𝑘 ∈ 𝑁𝑠 the following 

inequality holds: 

𝜓𝑠
𝑚(𝑝, 𝑞) ∥ 𝑥0 − 𝑥 ∥1≥ 𝑛

1

𝑝𝑚
1

𝑞𝐶𝑖(𝑥
0 − 𝑥), 𝑖 ∈ 𝐼𝑘.         (10) 

Let 𝜀 > 𝜓𝑠
𝑚(𝑝, 𝑞). We chose a perturbing matrix 𝐶0 = [𝑐𝑖𝑗

0 ] ∈  𝐑𝑚×𝑛 with 

rows 𝐶𝑖
0, 𝑖 ∈ 𝑁𝑚 and elements defined as follows: 

𝑐𝑖𝑗
0 = {

−𝛿 if   𝑖 ∈ 𝑁𝑚 and 𝑥𝑗
0 = 1,

𝛿 if   𝑖 ∈ 𝑁𝑚 and 𝑥𝑗
0 = 0,

 

where 

𝜓𝑠
𝑚(𝑝, 𝑞) < 𝛿𝑛

1

𝑝𝑚
1

𝑞 < 𝜀.                     (11) 

Therefore, due to (5) we have 

‖𝐶𝑖
0‖

𝑝
= 𝛿𝑛

1

𝑝, 𝑖 ∈ 𝑁𝑚, 

‖𝐶0‖𝑝𝑞 = 𝛿𝑛
1

𝑝𝑚
1

𝑞, 

𝐶0 ∈ Ω𝑝𝑞(𝜀). 

Moreover, the following inequalities are obvious for every index 𝑘 ∈ 𝑁𝑠: 
𝐶𝑖(𝑥

0 − 𝑥)=−𝛿 ∥ 𝑥0 − 𝑥 ∥1< 0, 𝑖 ∈ 𝐼𝑘. 

Using (10) and (11), we conclude that for any solution 𝑥 ∈ 𝐺𝑚(𝐶) and any 

index 𝑘 ∈ 𝑁𝑠 the following inequality holds: 

(𝐶𝑖 + 𝐶𝑖
0)(𝑥0 − 𝑥) ≤  (

𝜓𝑠
𝑚(𝑝,𝑞)

𝑛
1
𝑝𝑚

1
𝑞

− 𝛿) ∥ 𝑥0 − 𝑥 ∥1< 0, 𝑖 ∈ 𝐼𝑘. 

Thus for any index 𝑘 ∈ 𝑁𝑠 we have 𝑥 ∉  𝑃(𝐶𝐼𝑘 + 𝐶𝐼𝑘
0 ), and hence, 𝑥 ∉

𝐺𝑚(𝐶 + 𝐶0). Summarizing, for any 𝜀 > 𝜓𝑠
𝑚(𝑝, 𝑞) there exists the perturbing 

matrix 𝐶0 ∈ Ω𝑝𝑞(𝜀) such that 𝐺𝑚(𝐶) ∩ 𝐺𝑚(𝐶 + 𝐶0) = ∅, i.e. 𝜌𝑠
𝑚(𝑝, 𝑞) < 𝜀. 

Thus, we have just proven that 𝜌𝑠
𝑚(𝑝, 𝑞) ≤ 𝜓𝑠

𝑚(𝑝, 𝑞). 
Finally, we are left to demonstrate that 𝜌𝑠

𝑚(𝑝, 𝑞) ≤ ‖𝐶‖𝑝𝑞. Let 𝜀 > ‖𝐶‖𝑝𝑞, 

𝛼>0 and 𝑥0 = (𝑥1
0, 𝑥2

0, … , 𝑥𝑛
0) ∉ 𝐺𝑚(𝐶). We chose a row vector 𝑎 =

(𝑎1, 𝑎2, … , 𝑎𝑛) with elements defined as follows: 

𝑎𝑗 = {
−𝛼 if   𝑥𝑗

0 = 1,

𝛼 if  𝑥𝑗
0 = 0.

 

Then due to (5) we have 
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‖𝑎‖𝑝 = 𝛼𝑛
1

𝑝. 

Moreover, the following inequality is true for any solution 𝑥 ∈ 𝐺𝑚(𝐶) 
𝑎(𝑥0 − 𝑥)=−𝛼 ∥ 𝑥0 − 𝑥 ∥1< 0. 

Therefore due to lemma 2, there exists a non-zero matrix 𝐶∗ ∈ 𝐑𝑚×𝑛 such that 

𝐺𝑚(𝐶) ∩ 𝐺𝑚(𝐶∗) = ∅.           (12) 

Further, we consider a perturbing matrix 𝐶0 ∈ 𝐑𝑚×𝑛 defined as: 

𝐶0 = 𝜂𝐶∗ − 𝐶 , 

where  0 < 𝜂<
𝜀−‖C‖𝑝𝑞

‖𝐶∗‖𝑝𝑞
. 

Then we easily derive 

‖𝐶0‖𝑝𝑞 = ‖𝜂𝐶
∗ − 𝐶‖𝑝𝑞 ≤ 𝜂‖𝐶

∗‖𝑝𝑞 + ‖𝐶‖𝑝𝑞 < 𝜀. 

Therefore due to (12) we obtain 

∀𝜀 > ‖𝐶‖𝑝𝑞  ∃𝐶
0 ∈ Ω𝑝𝑞(𝜀)  (𝐺

𝑚(𝐶) ∩ 𝐺𝑚(𝐶 + 𝐶0) = ∅). 

Thus, 𝜌𝑠
𝑚(𝑝, 𝑞) < 𝜀 for any 𝜀 > ‖𝐶‖𝑝𝑞. Hence, 𝜌𝑠

𝑚(𝑝, 𝑞) ≤ ‖𝐶‖𝑝𝑞. □ 

 

5. Corollaries 

 

From theorem 1 we get the following results. 

Corollary 1. Let 𝑝 = 𝑞 = ∞. For any 𝑚 ∈ 𝑵, and 𝑠 ∈ 𝑁𝑚, the strong stability 

radius of the multicriteria non-trivial ILP problem 𝑍𝑚(𝐶, 𝐼1, 𝐼2, … , 𝐼𝑠) has the 

following lower and upper bounds: 

0 < max
𝑥′∈𝐺𝑚(𝐶)

  max
𝑘∈𝑁𝑠

  min
𝑥∉𝐺𝑚(𝐶)

  max
𝑖∈𝐼𝑘

𝐶𝑖(𝑥 − 𝑥′)

∥ 𝑥 − 𝑥′ ∥1
≤ 𝜌𝑠

𝑚(∞,∞)

≤ min
𝑥∉𝐺𝑚(𝐶)

max
𝑥′∈𝐺𝑚(𝐶)

  max
𝑘∈𝑁𝑠

 max
𝑖∈𝐼𝑘

𝐶𝑖(𝑥 − 𝑥′)

∥ 𝑥 − 𝑥′ ∥1
. 

Corollary 2 [9]. If s=1, then for any 𝑚 ∈ 𝑵, and for any 𝑝, 𝑞 ∈ [1,∞], the strong 

stability radius of the multicriteria non-trivial ILP problem 𝑍𝑚(𝐶, 𝑁𝑚) of finding 

the Pareto set 𝑃𝑚(𝐶) has the following lower and upper bounds: 

0 < max
𝑥′∈𝑃𝑚(𝐶)

    min
𝑥∉𝑃𝑚(𝐶)

  
∥[C(𝑥−𝑥′)]+∥𝑞

∥𝑥−𝑥′∥𝑝∗
≤ 𝜌1

𝑚(𝑝, 𝑞) ≤

𝑛
1

𝑝𝑚
1

𝑞  min
𝑥∉𝑃𝑚(𝐶)

max
𝑥′∈𝑃𝑚(𝐶)

  max
𝑖∈𝐼𝑘

𝐶𝑖(𝑥−𝑥′)

∥𝑥−𝑥′∥1
. 

Corollary 3 [1]. If s=m, then for any 𝑚 ∈ 𝑵, and for any 𝑝, 𝑞 ∈ [1,∞], the strong 

stability radius of the multicriteria non-trivial ILP problem 

𝑍𝑚(𝐶, {1}, {2}, . . , {𝑚}) of finding the extreme set 𝐸𝑚(𝐶) has the following lower 

and upper bounds: 

0 < max
𝑥′∈𝐸𝑚(𝐶)

  max
𝑖∈𝑁𝑚

   min
𝑥∉𝐸𝑚(𝐶)

  
𝐶𝑖(𝑥−𝑥′)

∥𝑥−𝑥′∥𝑝∗
≤ 𝜌𝑚

𝑚(𝑝, 𝑞) ≤

𝑛
1

𝑝𝑚
1

𝑞  min
𝑥∉𝐸𝑚(𝐶)

 max
𝑖∈𝑁𝑚

max
𝑥′∈𝐸𝑚(𝐶)

  
𝐶𝑖(𝑥−𝑥′)

∥𝑥−𝑥′∥1
. 

From corollary 2 we have the following result illustrating the fact that the 

bounds 𝜑1
𝑚(𝑝, 𝑞) and 𝜓1

𝑚(𝑝, 𝑞) are attainable for 𝑝 = 𝑞 = ∞. 
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Corollary 4.  If 𝑃𝑚(𝐶) = {𝑥0}, then the strong stability radius of the multicriteria 

non-trivial ILP problem 𝑍𝑚(𝐶, 𝑁𝑚) of finding the Pareto set 𝑃𝑚(𝐶) is expressed 

by the formula: 

𝜌1
𝑚(∞,∞) = 𝜑1

𝑚(∞,∞) = 𝜓1
𝑚(∞,∞) = min

𝑥∈X\{𝑥′}
  max
𝑖∈𝑁𝑚

𝐶𝑖(𝑥−𝑥
0)

∥𝑥−𝑥0∥1
. 

Now we formulate and prove one (a bit more general) result concerning 

attainability of the upper bound. 

Corollary 5. For any 𝑚 ∈ 𝑵 and any 𝑝, 𝑞 ∈ [1,∞], there exists a class of 

multicriteria non-trivial ILP problem 𝑍𝑚(𝐶, 𝑁𝑚) of finding the Pareto set 𝑃𝑚(𝐶) 
such that the strong stability radius is expressed by formula: 

𝜌1
𝑚(𝑝, 𝑞) = ‖𝐶‖𝑝𝑞 .                   (13) 

Proof. Let X = {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛}, where 𝑥0 = (0,0,… ,0)𝑇 ∈ 𝐸𝑛, 𝑥𝑗 = 𝑒j, 𝑗 ∈
𝑁𝑛. Here 𝑒j is a basic column-vector in 𝐑𝑛. Let 𝐶∗ = [𝑐𝑖𝑗

∗ ] ∈ 𝐑𝑚×𝑛 be a matrix 

with negative elements such that  𝑃𝑚(𝐶∗) = 𝑋\{𝑥0}. In order to make the 

solution 𝑥0 a a unique Pareto optimal in the perturbed problem 𝑍𝑚(𝐶∗ + 𝐶′, 𝑁𝑚), 
𝐶′ = [𝑐𝑖𝑗

′ ] ∈ 𝐑𝑚×𝑛, we have to demand for any solution 𝑥 ≠ 𝑥0 the following 

inequalities to be held: 

(𝐶∗ + 𝐶′)𝑥0 ≻ (𝐶∗ + 𝐶′)𝑥. 

Therefore, 𝐶′𝑥 ≥ −𝐶∗𝑥. So, we get 𝑐𝑖𝑗
′ ≥ 𝑐𝑖𝑗

∗ , 𝑖 ∈ 𝑁𝑛, 𝑗 ∈ 𝑁𝑚, i.e. 

‖𝐶′‖𝑝𝑞 ≥ ‖𝐶
∗‖𝑝𝑞. Thus, we obtain 𝜌1

𝑚(𝑝, 𝑞) ≥ ‖𝐶∗‖𝑝𝑞. Taking into account 

theorem 1, we get (13) is true. □ 

The following below results specify classes of scalar problems with attainable 

bounds. 

Corollary 6. For any 𝑝, 𝑞 ∈ [1,∞], there exists a class of multicriteria non-trivial 

ILP problem 𝑍1(𝐶, 𝑁1), 𝐶 ∈ 𝐑
𝑛, such that the strong stability radius is expressed 

by formula: 

𝜌1
1(𝑝, 𝑞) = 𝜓1

1(𝑝, 𝑞) = ‖𝐶‖𝑝𝑞 . 

Proof. Let X = {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛} be same set as in the proof of previous 

corollary. Let 𝐶 = (−𝛼,−𝛼, … ,−𝛼) ∈ 𝐑𝑛, 𝛼 > 0. Then we have 𝐶𝑥0=0, 

𝐶𝑥𝑗=−𝛼, 𝑗 ∈ 𝑁𝑛, 𝑥0 ∉ 𝑃1(𝐶), 𝑥𝑗 ∈ 𝑃1(𝐶), 𝑗 ∈ 𝑁𝑛, and  

𝜓1
1(𝑝, 𝑞) = ‖𝐶‖𝑝𝑞 = 𝑛

1

𝑝𝛼.  (14) 

We introduce a perturbing row 𝐶′ = (𝑐1
′ , 𝑐2

′ , … , 𝑐𝑛
′ ) such that 𝐶′ ∈ Ω𝑝𝑞 (𝑛

1

𝑝𝛼), i.e. 

‖𝐶′‖𝑝𝑞 ≤ 𝑛
1

𝑝𝛼. Proving by contradiction it is easy to show that there exists an 

index 𝑙 ∈ 𝑁𝑛 such that |𝑐𝑙
′| < 𝛼. This yields 

(𝐶 + 𝐶′)(𝑥0 − 𝑥𝑙) = 𝛼 − 𝑐𝑙
′ > 0, 

i.e. 𝑥0 ∉ 𝑃1(𝐶 + 𝐶′) for any perturbing 𝐶′ ∈ Ω𝑝𝑞(𝜓1
1(𝑝, 𝑞)). Since 𝑥0 ∉ 𝑃1(𝐶), 

we get 

𝜌1
1(𝑝, 𝑞) ≥ 𝜓1

1(𝑝, 𝑞). 
Taking into account theorem 1and equalities (14), we obtain: 
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𝜌1
1(𝑝, 𝑞) = 𝜓1

1(𝑝, 𝑞) = ‖𝐶‖𝑝𝑞 = 𝑛
1

𝑝𝛼 . □ 

 

Finally, we show that in scalar case all the bounds specified in theorem 1 can be 

attainable. 

Corollary 7. For any 𝑝, 𝑞 ∈ [1,∞], there exists a class of multicriteria non-trivial 

ILP problem 𝑍1(𝐶, 𝑁1), 𝐶 ∈ 𝐑
𝑛,  such that the strong stability radius is expressed 

by formula: 

𝜌1
1(𝑝, 𝑞) = 𝜑1

1(𝑝, 𝑞) = 𝜓1
1(𝑝, 𝑞) = ‖𝐶‖𝑝𝑞 . 

Proof. Let X = {𝑥0, 𝑥1}, where 𝑥0 = (0,0, … ,0)𝑇 ∈ 𝐸𝑛 and 𝑥1 = (1,1, … ,1)𝑇 ∈
𝐸𝑛. Let 𝐶 = (1,1, … ,1) ∈ 𝐑𝑛. Then we have 𝑥0 ∈ 𝑃1(𝐶), 𝑥1 ∉ 𝑃1(𝐶). Recaling 

that 
1

𝑝
+

1

𝑝∗
= 1, we obtain: 

𝜌1
1(𝑝, 𝑞) = 𝜑1

1(𝑝, 𝑞) = 𝜓1
1(𝑝, 𝑞) = ‖𝐶‖𝑝𝑞 = 𝑛

1

𝑝. □ 
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